53 research outputs found

    Production and characterization of monoclonal antibodies raised against recombinant human granzymes A and B and showing cross reactions with the natural proteins

    Get PDF
    The human serine proteases granzymes A and B are expressed in cytotoplasmic granules of activated cytotoxic T lymphocytes and natural killer cells. Recombinant granzyme A and granzyme B proteins were produced in bacteria, purified and then used to raise specific mouse monoclonal antibodies. Seven monoclonal antibodies (mAb) were raised against granzyme A, which all recognized the same or overlapping epitopes. They reacted specifically in an immunoblot of interleukin-2 (IL-2) stimulated PBMNC with a disulfide-linked homodimer of 43 kDa consisting of 28 kDa subunits. Seven mAb against granzyme B were obtained, which could be divided into two groups, each recognizing a different epitope. On an immunoblot, all mAb reacted with a monomer of 33 kDa protein. By immunohistochemistry, these mAb could be used to detect granzymes A and B expression in activated CTL and NK cells. The availability of these mAb may facilitate studies on the role of human cytotoxic cells in various immune reactions and may contribute to a better understanding of the role of granzmes A and B in the cytotoxic response in vivo

    Dissection of a metastatic gene expression signature into distinct components

    Get PDF
    BACKGROUND: Metastasis, the process whereby cancer cells spread, is in part caused by an incompletely understood interplay between cancer cells and the surrounding stroma. Gene expression studies typically analyze samples containing tumor cells and stroma. Samples with less than 50% tumor cells are generally excluded, thereby reducing the number of patients that can benefit from clinically relevant signatures. RESULTS: For a head-neck squamous cell carcinoma (HNSCC) primary tumor expression signature that predicts the presence of lymph node metastasis, we first show that reduced proportions of tumor cells results in decreased predictive accuracy. To determine the influence of stroma on the predictive signature and to investigate the interaction between tumor cells and the surrounding microenvironment, we used laser capture microdissection to divide the metastatic signature into six distinct components based on tumor versus stroma expression and on association with the metastatic phenotype. A strikingly skewed distribution of metastasis associated genes is revealed. CONCLUSION: Dissection of predictive signatures into different components has implications for design of expression signatures and for our understanding of the metastatic process. Compared to primary tumors that have not formed metastases, primary HNSCC tumors that have metastasized are characterized by predominant down-regulation of tumor cell specific genes and exclusive up-regulation of stromal cell specific genes. The skewed distribution agrees with poor signature performance on samples that contain less than 50% tumor cells. Methods for reducing tumor composition bias that lead to greater predictive accuracy and an increase in the types of samples that can be included are presented

    Expression of the Serpin Serine Protease Inhibitor 6 Protects Dendritic Cells from Cytotoxic T Lymphocyte–Induced Apoptosis: Differential Modulation by T Helper Type 1 and Type 2 Cells

    Get PDF
    Dendritic cells (DCs) play a central role in the immune system as they drive activation of T lymphocytes by cognate interactions. However, as DCs express high levels of major histocompatibility complex class I, this intimate contact may also result in elimination of DCs by activated cytotoxic T lymphocytes (CTLs) and thereby limit induction of immunity. We show here that immature DCs are indeed susceptible to CTL-induced killing, but become resistant upon maturation with anti-CD40 or lipopolysaccharide. Protection is achieved by expression of serine protease inhibitor (SPI)-6, a member of the serpin family that specifically inactivates granzyme B and thereby blocks CTL-induced apoptosis. Anti-CD40 and LPS-induced SPI-6 expression is sustained for long periods of time, suggesting a role for SPI-6 in the longevity of DCs. Importantly, T helper 1 cells, which mature DCs and boost CTL immunity, induce SPI-6 expression and subsequent DC resistance. In contrast, T helper 2 cells neither induce SPI-6 nor convey protection, despite the fact that they trigger DC maturation with comparable efficiency. Our data identify SPI-6 as a novel marker for DC function, which protects DCs against CTL-induced apoptosis

    Intracellular Serine Protease Inhibitor SERPINB4 Inhibits Granzyme M-Induced Cell Death

    Get PDF
    Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1β€² triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3Γ—104 Mβˆ’1sβˆ’1. SERPINB4 abolished cleavage of the macromolecular GrM substrates Ξ±-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death

    Late (> 5 years) regional lymph node metastasis of oral squamous cell carcinoma (SCC), proven by p53 mutation analysis

    No full text
    Background: A late (>5 years) neck nodal metastasis of oral cancer, poses a problem to the clinician: is it a late metastasis or a metastasis of a (unknown) second primary tumour? Methods: A 50-year-old male was seen with a contralateral lymph node metastasis, 51/2 years after treatment of a pT2N1M0 carcinoma in the floor of the mouth. Both the late metastasis and the original tumour specimen were analysed for p53 mutations. Results: Both specimens showed an identical p53 mutation, thereby confirming the lymph node to be a late metastasis. Conclusions: A lymph node metastasis can occur more than 5 years after treatment of an oral squamous cell carcinoma. p53 mutation analysis is of help to discriminate it from a second primary tumour. (C) 2008 European Association for Cranio-Maxillofacial Surgery

    A genetic explanation of slaughter's concept of field cancerization: Evidence and clinical implications

    No full text
    The concept of "field cancerization" was first introduced by Slaughter et el. [D. P, Slaughter et al., Cancer (Phila.), 6: 963-968, 1953] in 1953 when studying the presence of histologically abnormal tissue surrounding oral squamous cell carcinoma. It was proposed to explain the development of multiple primary tumors and locally recurrent cancer. Organ systems in which field cancerization has been described since then are: head and neck (oral cavity, oropharynx, and larynx), lung, vulva, esophagus, cervix, breast, skin, colon, and bladder. Recent molecular findings support the carcinogenesis model in which the development of a field with genetically altered cells plays a central role. In the initial phase, a stem cell acquires genetic alterations and forms a "patch," a clonal unit of altered daughter cells. These patches can be recognized on the basis of mutations in TP53, and have been reported for head and neck, lung, skin, and breast cancer. The conversion of a patch into an expanding field is the next logical and critical step in epithelial carcinogenesis. Additional genetic alterations are required for this step, and by virtue of its growth advantage, a proliferating field gradually displaces the normal mucosa. In the mucosa of the head and neck, as well as the esophagus, such fields have been detected with dimensions of >7 cm in diameter, whereas they are usually not detected by routine diagnostic techniques. Ultimately, clonal divergence leads to the development of one or more tumors within a contiguous field of preneoplastic cells. An important clinical implication is that fields often remain after surgery of the primary tumor and may lead to new cancers, designated presently by clinicians as "a second primary tumor" or "local recurrence," depending on the exact site and time interval. In conclusion, the development of an expanding preneoplastic field appears to be a critical step in epithelial carcinogenesis with important clinical consequences. Diagnosis and treatment of epithelial cancers should not only be focused on the tumor but also on the field from which it developed

    Hyperexpression of the granzyme B inhibitor PI-9 in human renal allografts: A potential mechanism for stable renal function in patients with subclinical rejection

    No full text
    Background. Granzyme B-positive T lymphocytes infiltrate renal allografts during acute cellular rejection and cause graft injury by inducing apoptosis of tubular cells. Protease inhibitor 9 (PI-9), an intracellular serpin that inhibits granzyme B, is known to protect cells from the action of cytotoxic T lymphocytes. Methods. Expression of granzyme B and PI-9 in transplant biopsies from patients with acute cellular rejection (N=18), subclinical rejection showing a mononuclear cell infiltrate without deterioration of renal function (N=15), or stable transplant function (N=13) were studied. Immunohistochemical stainings were analyzed and scored semiquantitatively by two independent observers who were not aware of clinical results. Results. Granzyme B was expressed by mononuclear cells in all biopsies with cellular infiltrates. PI-9 was diffusely expressed by tubular cells in the allografts of all patients with subclinical rejection. In contrast, PI-9 expression was only focally in the patients with clinical rejection or without rejection. Although no difference was observed in granzyme B levels between acute and subclinical rejection, in subclinical rejection tubular epithelial cells showed significantly stronger expression of PI-9 than in acute rejection (P=0.011). Conclusion. These data suggest that a high expression of PI-9 by tubular epithelial cells can serve as one of the factors protecting renal allografts from rejection in spite of the presence of inflammatory cell infiltrate
    • …
    corecore